- presheaf
- presnop
English-Polish dictionary for engineers. 2013.
English-Polish dictionary for engineers. 2013.
Presheaf (category theory) — In category theory, a branch of mathematics, a V valued presheaf F on a category C is a functor F:C^mathrm{op} omathbf{V}. Often presheaf is defined to be a Set valued presheaf. If C is the poset of open sets in a topological space, interpreted… … Wikipedia
Sheaf (mathematics) — This article is about sheaves on topological spaces. For sheaves on a site see Grothendieck topology and Topos. In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space.… … Wikipedia
Grothendieck topology — In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C which makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a … Wikipedia
Constant sheaf — In mathematics, the constant sheaf on a topological space X associated to a set A is a sheaf of sets on X whose stalks are all equal to A. It is denoted by A or AX. The constant presheaf with value A is the presheaf that assigns to each open… … Wikipedia
Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… … Wikipedia
Gluing axiom — In mathematics, the gluing axiom is introduced to define what a sheaf F on a topological space X must satisfy, given that it is a presheaf, which is by definition a contravariant functor : F : O ( X ) rarr; C to a category C which initially one… … Wikipedia
Functor — For functors as a synonym of function objects in computer programming to pass function pointers along with its state, see function object. For the use of the functor morphism presented here in functional programming see also the fmap function of… … Wikipedia
Germ (mathematics) — In mathematics, the notion of a germ of an object in/on a topological space captures the local properties of the object. In particular, the objects in question are mostly functions (or maps) and subsets. In specific implementations of this idea,… … Wikipedia
Function field (scheme theory) — In algebraic geometry, the function field KX of a scheme X is a generalization of the notion of a sheaf of rational functions on a variety. In the case of varieties, such a sheaf associates to each open set U the ring of all rational functions on … Wikipedia
Divisor (algebraic geometry) — In algebraic geometry, divisors are a generalization of codimension one subvarieties of algebraic varieties; two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil). These… … Wikipedia
Wave front set — In mathematical analysis, more precisely in microlocal analysis, the wave front (set) WF( f ) characterizes the singularities of a generalized function f , not only in space, but more precisely also with respect to its Fourier transform at each… … Wikipedia